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Previously fourd localizstion of current wfthfn a narrow regioa 

of menisCUg wa8 Utiuzed to C o p B t r U c t  electrodes Caartdn3.q very nma'll 

anmlIlt8 of caealyst placed in the Criticsl regions, 

In hydroga axidation the rer;te wa8 limited only by the aZHpic 

resistance of the electrode matrix; in 0 4 g e n  reductions, t h  rate was 

activation controlled up to 100 mA 

V 

I 
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Noble metal  electrode (8, Rh, Pd, Ir and Au) surfaces were 

car- ammined t o  cozlfinn previous results in ~e*/pe++ reaction. 

FWIEI-, it WES estalisfied tw FP+/W+ reaction OCCU~PS 011 

Free electrodes of the &om metals. Also the heafs of adsorption 

on these met;& were cslculated for t h i s  re8ctian. 

v i  



In order t o  meet the criticism of Fnrmkin et. al. (3) 

on the messurements on potentials of zero cbarge on platinum 

report& fram t h i s  laboratory,(1*2) 

cerriea out to establish the correctness of t h e  previous results. 

critical tests were 



.* . 

Potential sweep method and single galvaaoststic pulse method were 

used to determine adsorption of etwlene erad benzene frolm aqueous 

solutbim sf, various temperatures. Results of the two electrodhemica 

methods are compared and their equivalency is experimentally shown. 

A method of correcting potential-sweep results for the m e  in Oxide 

coverage in presence and absence of organic adsorbate is piroposed. 

Results of electrochemicalmethods of measuring adsorption me 

compared with those obtained by radiotracer measurements. 

vi i i  
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During this period a paper entitled "The Theory of Porous Gas 

D i f f u s i o n  Electrodes" was written and a chapter entitled  roche hem- 

icsJ, Techniques in  Fuel Cell Resea,rch," to appear in the Hand Boak of 

Fuel Cell Technology, was completed. 



lis indicated in R e p &  So. 7, (BsG-325), the conputer solution 

of the differential equntians for the “finite contact @e neniscus” 

yields a Unear relationship between applied voltwe and current output, 

in E?xccllent agreement with cxperimeatal observations. 

t o  apply the label “ohic” t o  oqy systen with a linear E-I relationship. 

It must be stressed that in  this case “pseudo-ohmic” is Q mre accurate 

term. The computer data has been analyzed t o  give the graphs of Fig. 1 

ruld Fig. 2, for hydrogen a d  oxygen respectively. 

One is m e d  

The U - c u r r e n t  pint distmce (the distance from the edge of 

the d s c u s  within ~ a h i ~ h  5@ of the t o t &  current is pr0duced)i.s plotted 

wainst applied potential, 3) 

(Note: this distance is re- an mea, A ~ / ~ ,  since 

=e done per line= un of meniscus.) W i t h i n  th is  region, coxqlete 

diffusion depletion does not occur, and the current is primarily activation 

limited. 

rad against the potential at the t i p  Tt. 
* app’ 

computations 

Figures 1 and 2 show an ingPrtwt result of the computer cdcula- 

tion. 

~mnll (10-3 to 104 cDI long), far 

the “thin film” theory. 

much thinner than loe2 cm and/or t o  control the deposition of catalyst 

i n  this region, mch of the catalyst is thus outside of the u s e m  region. 

A t  m d m t e  to high polariz;rtions, the reaction zone is extremely 

than w mea predicted ty 

Since it i s  aifficult to  make porous electrodes 

i h  o p t i m l l y  u t i l i z e d  catalyst, therefore, would be 3.n a very 

thin region of the electrode 

almost no difrusion limit could occur. 

m u l d  exbibit T d e l  behavior, since 
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Electrodes prepared in this f d o n  by deposftion of thin filns 

on a, supporting porous nctrix have been produced, ound exhibit this 

expected behzvior. 

With catalyst loodings of only 10JLg/cn2 of Pt, T d e l  behavior 
2 

of oxygen reduction ha8 been fouowcd up to currents of 100 m./cn . 
Residual - t rue  0-c resistace due solely to the electrolyte ntrtrix 

obscured the behmior at higher currents. 

In case of hydrogen ionizstion, where io is severzl orders of 

@tude higher, the current t n s  linited only by the ohnic resistCace 

of the mtrix. Experhents cre in  progress with thinner =trices. 

Up t o  now, with the sme loading ( l O p g / c m z  of Pt) currents 
2 

up to PA/m have been obt- “ined. 
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kgends for Figures 

Dependence of half-current area on applied potential 

and on t i p  potential as calculated for Hydrogen. 

Dependence of half-current a x a  on applied potential 

and on t i p  potential 89 calculated f o r  Oqygen. 
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In the lsst Report, results were presented f o r  hydrogen electrode 

reaction on a series of alloy electrodes in the Pt-Ni  system. 

were reported results of redox FecH/pe* reaction at  a number of metd 

and al loy electrodes (Au, Pt, Pd, Rh, Ir and Au-pd alloys). A nearly 

linear relation was observed between work fhnctioa and activity of 

different noble metals in the redox reaction. 

pected as theoretical predictions suggest that the activity for a redox 

reaction should be independent of the electrode material. Similarly, 

a regular change of the activity with alloy composition was observed. 

Due t o  the impcntesce of these results it was decided t o  re-examine 

than and t o  ascertah whether these results were obtained on oxide 

covered electrode or oxide free electrode surfaces. 

Also 

This result w88 unex- 

To check the geesenre of oxides, galmmostatic charging curyes 

were obtained on metal electrodes. 

Also the nature of charge transfer was further examined, end 

the current-ptential relations were established at different temperatures. 

Coverage w i t h  the oxygen containing species was determined in  

1 N %SO& srrtursted with Nz- 

t h i s  experiment. 

the tes t  campaJrtrpent by a stopcock. Case was taken t o  clean the elec- 

trodes and the glassware. An electrode was kept at any desired potential 

( f r o m  + 0.6 t o  + 1.5 V vs. h.e.) for LI given time a9ter which a constant 

The 1 ~ 1 1  3 c ~ ~ ~ %  ceii was used for 

Reference electrode w a s  €$ electrode separated from 

1 
I 

I 

I 

I 

I 

i 

I 

I 
I 
I 

1 
I 
I 
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cathodic current w a s  =lied t o  the electrode using a fast s#itch. 

change of potential with time was followed on an oscilloscope (535 

Telrtroaix) and was photographed. 

obtained rrt regular potential intervals. 

dependence of oxide formation, an electrode w a s  kept at a given potential 

for differeat period8 of times before the cathodic charging curves were 

taken. A typical example would be as follows: An electrode was poten- 

t iostated at + 750 mV far 30 sec., and cathodic charging curve was taken. 

The procedure was then repeated but  with the time of potentiostathg of 

1 m i n  and 30 mins .  

The 

The cathodic charging curves were 

To check a possible time 

The amount of oxygen containing species at a given electrode 

was determined f r a t h e  number of coulombs required t o  bring electrodes 

close t o  about + 0.35 V. A t  this potential a sharp change in V - t 
curves occurs. 

reduced and that hydrogen starts adsorbing on the electrode. 

It is generally taken that crt this point a l l  o q e n  is 

Before potentiostating each electrode was kept at about + 0.35 v 
It is previously established that at this  potential all for  1 min. 

oxides of these methods are reduced intime less than I sec. 

each coverage determination it wa6 assured that the electrode is h i t i a y  

oxide free. 

Hence, for 

In artother series of experiments, V - i curves were obtained on 

Au, Pt, €43, Rh and Ir electrodes at 12, 27, 35, 45 and 6OoC. In order t o  

c a r r y  out experiments below or above the room temperature, an air thermo- 

stated box w i t h  a front window w a s  used. 

fibre-wood. A t  one side of the box w a s  a fan in front of which a 

The box was  made of insulating 



coil h 

8 

ster was placed. Texnperature of the box w88 

maintained uaifonn w i t h i n  - + ~ O C .  A control type Hg;-thermometer was 

suspended from the top of the box and was connected t o  the heater 

through a control-current supply switch. For measurements below the 

room temperature, a mixture of acetone-dry ice was used as the coolant 

placed inside the box. 

placing a thermameter inside the cell. 

The &tad. solution temperature was measured by 

Coverage by o m e n  cont,ninina species does change f’rom one metal 

t o  another, and is dependent on the electrode potential. 

af‘fected by the time an electrode is kept at a given potential. 

T a b l e  1: coverage data 8re C G U e c t e d .  

Correction was made for roughness factor and charging of double layer. 

From previouS data roughness factor for Pt, Pd and Ir electrodes was 

taken a8 1.7, and for Rh and Au electrodes as 2. 

It is little 

Zn 

2 Tihey are given in /& C/cm 

2 

In the present experiments, i - V curves fo r  all metals we 

3 the same 88 previously obtained and reported. 

In  general, activity increased slightly with increasing t-- 

In Table II, io’s values are given for each tpmperature and ature. 

metal exambed. 

In Figures 1 ant3 2, log io values are plotted vs. 1/T. Heats of 

activation were calculafed f’ronthe slopes of these curves; they are 

4.9, 5.3, 2.4, 5.5 and 7.8 kcals/mole for Pt, Ir, Pd, Au and Rh elec- 

trodes, respectively. 
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DISCUSSIW 

Coverage by oxygen containing species on Pt electrode at poten- 
2 tials less than 1.0 V are all below about UOp C / c m  . 

decreases with decreasiag electrode potential. 

is close t o  the reversible Pe*/%’e* electrode potential, the cover8ge 

is only 70/LC/em . 
by other 

adsorbed oxygen species and not f ~ o n  oxides which can be present 

the electrode surface only at potentias above 1 V. 

This coverage 

A t  about 750 mV, which 

2 
S i n U a r  values of coverages were previously obtabed 

It is concluded that these coverages arise from the 
4 on 

H i g h e r  coverages on Rh electrode are in  agreement with previously 

reported values for adsorbed wgen ~ p e c i e s . ~  Only if the electrode 

wa8 potentiostated at potentials above about 1 V, oxides do form and 

the different types of the V - t curves are then obtained. 

electrodes po significant coverage was detected even at electrode 

potentials above 1 V. 

above about 1.2 V. 

On gold 

An oxide forms at this  electrode at potentials 

It is  concluded, therefore, that a l l  redox exp?rhen-ts on these 

metals were conducted on -- oxide 7 free, bare m e t a l  electrodes. 

fu l l  bportaace should be attached t o  the change of activity for the 

Fe-Be* redox reaction on these metals. 

Consequently 

Law values of the activation energy, as calculated from the 

temgerature dependence of activity, are being analyzed. 

r‘ 

I 

L 
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+0.6 30 sec. ---_ 
1min 

30 min 

+O 75 30 sec. 70 

1 0  70 

5 min 

30 min 70 

a.9 30 sec 100 

30 

30 

70 20 N10 

70 nJ 20 w 10 

45 

80 r3 10 45 

160 30* < 30* 50 

1min 100 180 30* <SO* 50 

30 m i n  100 180 soff 50 

5 m i n  680 c40 300 

20 min 680 300 C 40 300 



Elec- I 2 O C  27OC 35OC 45OC 60°c 
trode 

Pt 6.3 10-3 1.04 x 1.32 x 1.42 x loo2 2.24 x loo2 

Elh 

Ir 

w 

Au 

5.3 

4.15 x loo3 (18OC) 2.1 x lom3 7.8 

1.07 x ( l 6 O C )  1.21 x low2 1.9 

I-- --- 

4.0s 10-3 5.5 x 10-3 9 

10-3 7.5 10-3 1.2 

10-3 9.5 10-3 1.2 

x lo'* 1.5 x 1.9 

x 1.14 x 1.4 

x loo2 

x lo-* 

x 

x 
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Measurenents of the potential of zero charge on platintrn 

reported previously frm this laborat&*2 have been criticized 

recently in a p a p  by Frunku~ , mashova cad ga~arinov.~ TO evaluate 

the situztion and neet the CriticbnS of these authors s a  -her 

experinents w e r e  necessary. The nain purpose of these m r m s ,  

which are reported below was t o  veriry that the xdnbun in capacity 

observed previously in dilute solutions on Pt  electrodes indeed corres- 

ponded t o  the potential of zero charge on this aetal. 

kynkin et a.l.3 clained tbt in the case of platbun, the Illi.nirmm 

5.a the zqmitance-ptentiol  c i m  does nut carespond t o  the maximu 

diffusivity of the d a l e  layer, and therefore t o  the p.z.c. Also, plat- 

adsorbs bydrogen and o m e n  and their ionfiation superinposes pseudocapa- 

city on double layer capacity. Accordbg t o  the above authors, the 

difficult ies in neasurbg the potentidl of zero charge by capacitance 

nethod are not yet overcone. One has t o  cheasure the cqaci ty  a t  mch 

higher frequencies so the contribution due t o  the pseudocapacity is 

negligible. The effect of @I on potential of zero charge cannot be 

explained on the basis of present knowledge an double layer on solid 

electrodes 

In the present report period, the effect of frequency and the 

I -  
concentration of the electrolyte on the capacitance on platinun was 

studied in detail  in an att- t o  v e r w  our previous results. 
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If one has considerzble variation of capacitance with frequency 

and the shape of the capacitance curve changes with frequency, then a 

pseudocapacity contribution is indicated. However, there are other factors 

that  can cause a variation i n  capacitance with 

( i i i )  

Geonetry of the electrode and the 

Screening of the electrode due. t o  

c a P i l l =  

frequency which are as 

counter electrode assenbly- 

the presence of the glass 

Penetration of the electrolyte into the space between 

the platinun wire and the glsss surrounding it. 

R O ~ I ~ Q S S  of the electrode (havina; recesses pe2iks). 

Dielectric relaxation of the solvent effect. 

Again, if the frequency is sufficiently high these ef’fects will beccae 

smdler asd contribute t o  the capacity nea.sured t o  a lesser degree. 

The variation of the electrolyte concentration gives vzluable 

infornation, First*, as the concentration of the electrolyte is  raised 

the diffuse layer capacity CD is going t o  becone larger and thus its 

contribution t o  the to ta l  capacity is m e r ,  which follows fYm the 

relation 

In dilute solutions a t  potentials not far amy frm the potential of 
1 

capacity follows a cosh function with respect t o  charge on the electrode. 

Thus, one sees a aininun in the czpacitance-potential curve corresponding 
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t o  the zero cha-ge On ,he elec rc 

17 

z .  As the concentxaticm is a c r e  sed 

the contribution of the diMrse lqer capacity t o  neasured capacity 

becmes sndler and the iinitlun disappears. Secondly, if one increases 
3 

the perchloric acid concentration, according t o  the theory of Frunkin, 

B a d  R being in equilibfiun the contribution of pseudocaprcity due to  

ionization of H should increase. This pseudocapacity being -1 t o  

the double Mer capscity, tbe negative bran& of the Capacity-pOtential 

curve should becone steeper, as the concentrstion of the perchloric acid 

increases. 

+ 

Appaxetus and the experhentation used are described in  previous 
2 

reports . 
1. Frequency Variation of the Capacity 

The high purity requirener;ts were all the nore stringent beczuse 

the tine required for the experirsents was cansiderably longer. 

were nade a t  va,riaus potentials increasing and decreasing the frequency. 

Frequencies fkcm 500 cps t o  8OOO cps were used, The transformer ra t io  

arn bridge WELS calibrated for a series resistance-capacitance circuit, 

For this lxrrpose General Radio Standaxd capacitances and resistances ere. 

used. 

tance (R,) and capsclitasce (Cs). 

t o  the readings. Then, Rs was plo t ted  against l /O (wbere cJ = 2nd) and 

Rs value for infinite frequency was obtained. 

Nkasureraents 

The bridge readings were converted i n t o  series ewvalent  resis- 

Proper calibration factors were applied 

The extrapolated R, was 
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subtracted fron the Rs rezdiogs. Bar, Rs - Rs (&raplLted) asd C, 

were back converted into a parallel equivalent resistance a d  capacitance. 

This sequence is shown in Figure 1. 

potential curves for various frequencies. 

Figure 2 shows the czpc i t ace -  

Figure 3 shows C and R 
P P 

corrected fo r  arez? 

log-log scale. If 

(2 1% R p ( d  log 
and &bout - 1.0 jn 

5 and Leikis e t  al. 

of the electrode as a, function of frequency on a 

there is a considerable electrolyte penetration, the 

3 ) h a  a slope of about - 0.5 in dilxte solutions 

concentrated solutions. 

considering the penetration l ike a tranaission line. 

4 This was shown by Grantham 

It can be seen fim Fig. 4, corresponding t o  a situation where electro- 

lyte penetration w a s  known t o  be present that (a log R )/( 3 log 3 ) = 

- 0.6 and the capacitance a lso  varies With frequency. 

slope of about - 1.0 and fkequency dispersion of the capacitance is 

extreaely smU. 

of electrolyte penetration but czn be. explained on the basis of dielectric 

relaxation. 

dl 
P 
Figure 3 has a 

This result cannot be explained very well on the basis 

Thus, considering Fig. 2, it is seen that the shape of the curves 

does not change with frequency 4 therefore the pseudocapacitance 

contribution t o  the measured frequency is negligible and the mininUm 

observed corresponds t o  P.Z.C. 

2, Vzriatim of Electrolyte Concentration 

The high purity reqyhenents in these experinents were even 

higher than other experinents. 

tall ized several tines knz hot water. 

The analytical grade KCl% was recrys- 

A stock solution of the highest 
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eoncentration possible wzs W e  and pre-electrolyzed over two days in the 

pre-electrolysis cell. Measurenents were carried out in d i lu t e  HC14, 

solution first and then with successive additions of s m l l  amounts of 

KClO solutions in the pre-electrolysis cell.  The solution was being 

pre-electrolyzed under N2 atnosphere, w h i l e  the n e a s u r k s  were beins 

carried aut in a more dilute solution. 

HCl% concentratfan variation. 

4 

A sinilax procedure was used for 

Figure 5 shows the effect of vasiation of concentration of 

perchloric acid on the capacitance - vs. potential behmior. The 

disappears as soon as the concentration is above 5 x 10-3 N HC104. The 

capacitance branch on the negative side of 550 CN (r.h.e.) does not 

become steeper and thus gives no indication t o  any pseudocapacity due t o  

imization of H a t  these potentials. 

In Fig. 6, the effect of variation of concentration of KCl% a t  

const& pH on the C - V plat a lso  shows that  the minirmn disappeass a t  

higher concentration and is thus characteristic of the tlaxi;un diffuaivity 

of the double layer. 

The averall change of capacitance with concentration is sinilar 
6 t o  that observed by Grahame on the Hg/HCl% systen. 

Future Work 

There  is one mre  questian as t o  what extent our electrodes are 

free of hydrogen. 

ebsorbed bydrogen by heating the platinm bead electrode a t  800°C under 

high vacuum (- 10 

hours). The electrodes need t o  be sealed in quartz t o  heat then t o  

Thus sone experlnents are planned t o  eliminate the 

-6 m or better)  for extended period of tine (90 - 100 
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. &lOQC. This type of work is in progress at the present t h e .  Also 

prellnhary data on silver is obtained, Capacitance measurenents on 

silver w i l l  be carried out. Then, the appslratus fo r  a third nethod 

will be built. 
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. -  Captions t o  Figures 

Fig. 1. 

Fig. 2. 

Pig. 3. 

Fig. 4. 

Fig. 5. 

Fig .  6 .  

Sequence of operatians performed t o  obtain Cdl and Rdl frcm the 

bridge r e u s .  

Camitme-potential  m s  as a function of frequency f o r  o 

sat-  electrode in a U-3 I ~ 1 %  solution. 

e 
scale, for a case when practically no penetration of electmlyte 

was present. -0- represent the values at - 550 w 

resent values at - 500 EIV. 
Rdl and C 

scale wben electrolyte penetration was preserit and the slope 

a log %/a 1% 9 = - 0.61. c varies with freq,,ncy nuch nore 

P P 

e plotted as a *tian of frequenry on a l~g-log 

-x- rep- 

dl platted as 8 function of frequency on a log-log P P 

P 
than Fig. 3. 

Capacity potd ia l  plots obtained a t  various concentrations of 

KCl% a t  a constant pH for the 8- platinun electrode. 

Cap.zcity-potential curves for various concentrations of HClOq 

as denoted on the figure. M q r  be noted that above 5 x M 

HC104 concentration the minisum in the curve disappears asd no 

steep rise on the negative branch of the curve as the concen- 

tration is increased. 
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~P , -  

CP 

Gp 

1) P m e l  equivahnt measured capacitance and corductance. 

2) Comersitin to series capacitance and resistance 

3) Extrapolate Rs t o  ca frecpency - solution resistance 

4) Subtract Rsoln from Rs 

J 
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FIG. 3 Plotinurn electrode without electmlyte penetrotion. 



.. . 

. 

r 
0 
c .- 
c5 

c 
v, .- 
W 

Q a 

' 100 

I . .  

I I I I I I 
2.8 30 3.2 34 3.6 . 38 

log v 

FlG.4 Ptotinum electrode with the presence of electrolyte penetration. 
- 

- 
0 
0 

-t 
Y 
Y 

c 
3 

IO 



- .  

Potential (c*h.e.) . 

FIG.5 . . 



4 6  

42 

3% 

. 

34 

0 
& 

(Y 
I 

5 2 9  

Q 
0 
0 

25 

23 
4 
4 

ia 

IE 

14 

M 

M 

I I I I I I 
400 450 5 0 0  550 600 650 700 

Potential (mV R.H.&) 

FIG. 6 
. 

. .  



2 8  

In the report period eqerinentdmrk was c m i e d  out to ev&u,'te 

various pethods of adsorption messure?aen%s critic-. Measurmts  of 

the &arptiQn of benzene 

continued, a d  in  tcdditian c. study of the adsorption of benzene by 

gal.vtsosti?tic transient nethod was initiated. 

etbylene by p0tentiS;l sweep method were 

For the p t e n C L l  sweep nethod the e x p e r i t d  set-up, &s w e l l  - 
.L t%= n_.p_??a_rir?onffi pc.z&e sb= ~ r e y i ~ i ~ s ~  rep?+&, 

except for the follawia(j I3odlsications: 

(a) Labeled benzene Y&s used, ;md the bulk concentration was 

d e t e h d  using a scinti l lat iaa counter W i a t e l y  t f t e r  e-ch sweep. 

This w@s done in  order t o  ;void errors due t o  equilibrztion of benzene 

between the solution a d  gas-ph€kse above the solution. 

atures (so0 and 70') this error night become bport;;nt. 

A t  higher t e m p -  

(a) The munt adsorbed wIIs cetlcuLted in a different way (see 

Discussion) i n  order t o  acount for errors connected with v-rious degrees 

of cmerGge wkth oxide in presace vsd in absence of orgzzrdc aterial. 

The @v@ost&ic transients were carried out in the sane ce l l  

and on the sane electrode, prepared in the sane wcy 2s i n  the potentid 

sweep runs. 



The charging curves were obtained in blank solution and in 

presence of benzene. A typical exqmnle is shown in  Fig. 1. The product 

of current and the difference between (ytot - To) is taken as the Bpoullt 

of electricity connected with oxidation o f t h e  adsorbed benzene. 

(a) Time dependence of adsorption 

The %ime c?ependence of adsorption of ethylene and benzene was 

The time ree-d f o r  coacentrations lower than those used before. 

required t o  reach constant values of areas between the runs in blank 

solutions and &sorbate containing solutions was fomd t o  change with 

concentration ~ r a a  /v 75 m i n .  in  d 10 m / l  solutLo> t o  5 m i n .  in 
-7 

-5 
10 n/l solution. Adsorption fine in each run was correspondingly 

adjusted t o  be longer than that required t o  reach steady state. 

(b) Ethylene 

The sweep rate used was 0.5 V/sec, neasurenents were carried out 

at 30' at the potential of 300 mV ("E). 

i n  Fig. 2 (circles). 

method aze shown (triangles). 

The adsorption isotherm is shown 

In the sane figure, results obtained by radiotracer 

In  Fig. 3 the potential dependence of adsorption obtained by the 

sweep method is conpared with that obtained by radiotracer method. 

(c) -- Benzene, - potentia& sweep method 

The sweep rate used was 0.5 V/sec. 

29 
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Adsorption isotherm obtained at 30' and 500 DN is &wnm in 

Fig. 4 (circles) along with the results of radiotracer method (triaruz186). 

Adsorption isotherm obtained at 50' and 300 nV is shown in 

Fig. 5 (circles) and compared wi th  the results of galvanostatic trans- 

ients (crosses) and ra io t r scer  nethod (triangles). 

Adsorption is&herm at 70' shows an unusual scatter of experi- 

ment& pohtc and is stil.l under study, as the rea,soDB of the lack of 

reproducibility are nat yet clear. 

The pc'ce-,t~CL. Cepedace of adsorption at SO0 in solution 

6 x 

&racer m t h d  (+ r i t ; rTZes ] .  

n/l is shnm i~ Fig. 6 (circles) and compared with the radio- 

T ~ M  Emo\;I?t of electricity &B r: i ( tot - oJ ' connec+,ed w i t h  

the oxidation of adsorbed benzene was constant in the current density 

range 0.2 - 1 mA/cn . The 

current density used i n  measurements reported was 0.4 mA/cm . Adsorption 

isotherms obtained at 50' and at potential of 300 mV is  shown in Fig. 5 

2 At higher current densities $s decreased. 
2 

(crosses). 

Potential dependence of adsorption at 50°, as measured by galvsn- 

ostatic pulse mthod is shown in Fig. 7 (crosses) end compared With 

results of radiotracer method (triangles). 

t 
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DISCJSSXOIJ 

In Fig. 8 anodic and cathodic sweeps are shown in presence and 

sbsence of benzene. For the curve corresponding t o  the blank solution 

the cathodic area (D) s t r ic t ly  corresponds t o  that of the anodic one (C). 

This indicates that the t o t a l  am& of a i d e  formed duriag the anodic 

pulse is reduced. during tbe cathodic sweep. 

the cathodic area (B) is m d l e r  than in blank solution (I)). This 

indicates that the adsorbed organic material prevents t o  some degree 

formation of oxide. The difference in the coverage With oxide in absence 

and presence of the adsorbate can be then evaluated by the W e r e n c e  

i n  the correspoadfng cathodic areas (D - B). Thu, the charge connected 

with oxidation of the organic material was evalusted not 88 a difference 

between the anodic areas (A - C), but as a difference between the anodic 

and cathodic areas obtained in the presence of the adsorbate (A - B). 
this way the error connected w i t h  the change in coverage with oxide caused 

by adsorption of organic material was corrected. 

In  presence of adsorb- 

In 

2. Conparisom of p0ten;tial sweep and radiotracer method results 

The radiotracer method, being the most direct one, is assumed t o  

give the most relidble results, which serve as reference points with 

w h i c h  results obtained by other methods should be conpared. 

a disadvantage that it measures the coverage not only with the adsorbate, 

but with the possible intermediates of the reaction the adsorbent may 

It suffers 



I 

undergo at the electrode. fIowever, in the systems studied, the adso~p- 
1 -  
I 

I 
I -  t ion isotherm previously obtained showed no indications of SigDificant 

aaountis of other adsorbed radicals than the adsorbent The 

I disadvantages of the patential sweep nethod are more numerous rsnd were 

outlined pireviatu3ly. 
4 

I -  

The results of comparison of the electrochemical methods with 

the radiotrscer olfe are still eiguou.6. A fairly good 8grea-t 
I 

obtained for the ethylene system act SO0, both in the concentration and 

potential degendence of adsorption (Fig. 2 and 3), although in the la t te r  

one the maxima of adsorption differ by - 100 nV. A good ape& 

was also obtained for the benzene system at SO0, both with resped t o  
I 

concentration and potential dependence (Fig. 5 and 6). However, results 

&t*d at 30° for benzene nasirediy dif”fer f’rom those obtained by 

I radiotracer method. 
I 

The present results at 30’ were interpreted in terms of a Fruxnkin 

isotherm: 

d A H  u, bH is the heat of adsorption, K is the equilibrium dQ where r = 

constant. The plot of 8 versus (log c - log m) is shown in Fig. 9. 

The values of r and K are respectively r = 16.7 Kcals. 

8 

K = 4.2 x 10 

d/mole.  he value of r .  differs greatly froan that  obtained by radio- 

tracer method where r = 4 Kcals, whereas the equilibrium constant is of 

the sam? order of @tude. = 2.1 x 1 9  ml/mole. ‘radiot .meth. 
The discrepancy between the radiotracer method and potential 

sweep method results, found in benzene system at 30’ and not a t  50°, may 
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indicate that the agreement, at the latter temgersture is fortuitous, 

Xowever, no f inal  conclusions canbe dram before the results obtained 

at 7OoC are obtained, and a few other systems are investigated. 

. .  

3. CcaRPaJr ison of' results of galvanostatic and potential sweep method 

In Fig. 5 the adsorption isotherms obtained by the two  metbods 
- 

are shown. 

If the potential sweep results are not corrected for  the difference in 

the amaunt of oxide formed in presence and absence of tbe adaorbate 

(cf. Sectior: IV.l), the integration of the trace obtahed by anodic 

potential sweep leads t o  the anodic charging curye that would be obtained 

under the sane conditiow, as shown below. 

method dV/dt is c o m e ,  thus multiplying the current axis by dt/dv 

a plot of iat/av = ds/av versus potential is obtained. 

The agreement is very good, as would indeed be expected. 

In the potential sweep 

In  the galvencst&ic pulse method, the time axis can be multiplied 

by the value of constant current resulting i n  a plot of it = Q versus 

potential. 

In Fig. 10 the integrated values of q obtained frcim the potential 

sweep method for blank (crosses) and benzene cantabhg (circles) solu- 

tions are shown together with the directly obtained oscillograrms of 

charging curyes (lines la1 and *b'), in which the tine d s  w a s  d t i p l i e d  

by the value of current. The  agreenent is excellent, proving experi- 

mentally the esuivalency of both methods. 

It must be mentioned, however, that both methods are expected 

t o  be equivalent only 3 . ~  this range of current densities applied in the 



.. * 

galvanostatic 

transient between t h e  two given potentials appraxzmately equal to  dV/dt 

value i n  the potential sweep. A t  t o o  high or too l o w  current densities 

the same deviations may be expected as those arising from too high or 

too law sweep 
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Captions to Figures 35 
. .  

Typical anodic charging curve obtained in blank solution 

(a), with superbnposed curve in presence of benzene (b). 

Adsorption isotherm for ethylene obtained a t  300 C. 

Circles: potential sweep method ( aV/&t  = 0.5 V/sec, po- 

tent ia l  of adsorption 0.3 v); triangles: radiotracer me*- 

od (potential of adsorption 0.4 V). 

Potential dependence of ethylene adsorption a t  30' C. 

Circles : potential sweep method; triangles : radiotracer 

method. 

Adsorption isotherm for benzene obtained a t  30' C and 

0.5 V. 

Adsorption isotherm for benzene obtained a t  50° C and 

0.3 V. 

triangles : radiotracer method, 

Potential dependence of benzene adsorption a t  50' C. 

Comparison between P.S,L (circles) and radiotracer meth- 

od (triangles) concentration of bensene 6 - x . 1 0 4  M. 

Potential dependence of adsorption obtained a t  50° C for 

bensene by galmnostatic method (crosses) and radiotra- 

cer method (triangles) concentration of bensene 11 x lO"7M. 

mica1 curves obtained by potential sweep in presence 

(- - 0 )  and absence (-) of hydrocarbons. 

The plot €3 veraua (lg c - l g  - ) for  benzene b o -  

therm a t  30' C. 

Circles : P.S.M, j triangles : radiotracer method. 

Circles : P,S.l!.; crosses : galvonostatic method; 

e 
1-8 

F i g  10, Integrated m s  obtained in anodic part of potential 

sweep (Fig 8 ) .  
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V (N.H.E 1 

FIG. I Typicol onod ic charging curve 
a-blank solution (saturated with nitrogen) 
b-in presence of benzene. 
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ELBCZfROCHPMICAL ElBwGY c m 1 m  

During this  period, a theoretical analysis of the thin film model 

of porous gas dlff'usion electrodes was made. 

is found in the Appendix attached t o  this report. 

The abstract of this work 

In addition, a chapter entitled "Eleetrocbemicsl T-s iZr 

Fuel Cell Research'' was written in collaboration with Dr. E. G i l e a d l .  

This  Chapter w i l l  appear in the Hand Book of Fuel C e l l  Technology, 

which is beiogoedited by C. Berger. 

of investig&ion is first treated. 

deals With the principles of electrode kinetics in the investigation 

of me-sms of reactions. 

~eterminstion of the overa~.I. reaction, ( i i )  diaeprostic cr i ter ia  for 

determination of the reaction path, ( i i i )  role of electrosorption. In 

the next section the aspericlental nethods for these determinations are 

broadly divided under ( i )  steady state measurements, ( i i )  transient 

measurements , ( iii) ehctrosorpt ion measurements 

identification of internediates, (v) determination of adsorption 

pseudocapacitauce. Finally, a section on studies on porous electrodes 

is dealt 'Mith. Here, after briefly discussing the werpotentisl-current 

density and current distribution relations, the topics of ( i )  Important 

parameters de- the performance of porous electrodes, ( i i )  methods 

of preparation of porous e.Lectdce, (iii) physical methods of charts- 

tierIzat.ion of porous electrodes, (iv) ekctrochemimiL measurements on 

porous electrodes and (v) model pore studies are treated. 

In this chapter, the methodology 

It is  followed by a section which 

eectiwi tre~t i i  SE tt;aorg- 'CCU (i) 

( iv) detect ion and 
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All forms of polarization losses are cansidered. It is not 

possible t o  obtain ana ly t ic  solutions for the apparent current density- 

overpotential aid current distribution relations under these conditions. 

Analytic solutions are, however, possible for scene special cases: viz. 

activatian-ohslic and concentration-ohmic. 

Numericsl calculations are carried out i n  the case where all forms 

of polarizaticm are present, varying; the kinetic and physical parameters. 

This  model Yfdds M@er current densities than the simple pore model 

under identical conditions. 

for the two models. 

The general shapes of the curves are similar 

A region of normal Tafel slope is followed by a 

region of double t h i s  slope a t  higher aver-potentiab whlcii 

w e r  into the limiting current region. 

p 9 e s  

The current distributian relations 

show a special type of behavior. A t  low over-potentials, there is uniform 

current distribution, f ollcnred by increasing uneven distribution but 

close to  the limiting current, it again passes over into a region of 

uniform current distributian. 

Numerical calculations for the current and potential distribution 

i n  the case of only activation ard ohmic polarization are presented in  a 

siqXftel manner i n  tenas of a parameter which contains a l l  the kinetic 

snd physical quantities. For this case, the apparent current density is 

slightly lower than that for the  simple pore model at high over-potentials- 
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* S. Srinivasan and H. D. Hurwitz 

1. Introduction 

The present paper deals with an analysis of porous gas difTu- 

sion electrodes for the thin filmmodel. 

assuming that activation prwesses are fast and that the rate is 

controlled by mass transfer and ohnic processes.”* The subsequent 

treatments of this model do not show clearly the influence of kinetic 

paraneters on the overall rate 8s a function of overpotential and on 

the current distribution problems. 

numerical method is used in the case where all forms of polarization 

are present t o  ascertain these effects. In addition, some l i n i t i n g  

eases are cansidered - case of OR&- activation and of&c poltirizaticn, 

case of only concentration and ohmic polarization - where analytic 

solutions are possible for the current density tis a function of the 

overpotential wd the current generated as a function of distance in 

the f i l m .  

The &el w a s  first considered 

In  the present work, a 3,4 

2 .  Description of model and reaction sequence 

In  the thin f i b  model, the basic assumption is that  a thin 

On leave of absence fromthe Free University of Brussels, Brussels, 
Belgium. 

* 
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. _  film of liquid exists above the meniscus and is in  contact with fbe 

solid phase i n  the pore (Fig. 1). It is  assuued that the thickness 

of the f i l m ,  br, is a constant and is given by 

c 

1 
Dr = r2 - r 

where r and r are distances of the electrode-electrop- and 

electrolyte gas interfsces from the z taxis - a cylindrical coordinate 
2 1 

system is used as in a preceding paper. Since b r  is small compared 

t o  the radius of the pore, r2, it is assumed that the film forms a 

right angle edge w i t h  the meniscus of the electrolyte. It is further 

assumed that all the current is generded on the electrode surface in 

the film region (i.e., from z = 0 to z = 1 in  Fig.  1). 

A reaction sequence of the following type is assumed for  this  

model. 

( i )  Diffusion of reactant gas, R, from outer end of porous 

electrode, A, at which gas pressure is Po t o  gas-electrolyte interface. 

( i i )  Dissolution of R in electrolyte a t  gas electrolyte 

interface r = rl f o r  o & z 4 -11 . 
( i i i )  Radial difhsion of the dissolved gas from r = r1 

t o r  = r2 f o r o  z <,I?. 

(iv) Electrosorption of dissolved reactant gas at electrode 

(Raas> - 
+ (v) Charge transfer reaction of R t o  give Rds. 

(vi) 

(vii)  

ads 
4- Charge transfer reaction of Rads t o  give products, P. 

Diffusion of products away from the electrode and 

migration of ions through film. 



These steps may be represented by 

I 

II 

111 

Iv 

VI 

It is assumed that step V is the activation controlling 

intermediate step at the electrode. 

steps at  the electrode are assumed t o  be fast and are grouped under 

V I .  

of this  type of reaction. 

polarization is  caused anly by a change of the reactant concentration 

a t  the electrode-electrolyte interface (m). The symbols R and R, 

represent the reactant R in the gaseous state and in solution; e 

stands for the gas electrolyte interface. 

A l l  the other charge transfer 

The hydrogen and oxygen dissolution reactions serve as examples 

It is also assumed that concentration 

g 

In a previous paper,5 it was  shown that the rates of the 

first two steps - viz. diffusion of reactant gas through the elec- 

trolyte free part of the pore and its dissolution in  the electrolyte 

at the gas-electrolyte interface are considerably faster than the 

subsequent steps of the overall reaction. The l i m i t i n g  currents due 

t o  these processes were found t o  be of the order of 10 3 and 10 5 amp 

respectively, using a pore radius of 10- 4 cm, 
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3.1 Case where all forms of polarization are present 

The rate of the electrode reaction in an element dz of the 

electrode (pig. 1)  is given by 

a = 2rr2 ioLL (r2,e) exp(TF/m) - exp(-yF/m)] 
C0 

where io is the exchange current density of the electrode readion 

when the concentration at the electrode is co. 

activation and concentration 0verpotentiaI.s.  be symmetry factor, , 
is assunred to be 1/2. 

7 is the sum Of 

The average potential drop in the element, dz, is m e s s e d  

where is the specific conductivity of the electrolyte. In order 

that  the concentration, c(r2,z), at the electrode surface in the 

steady state be ascertained one may assume that the reactant gas has 

a flux only31 the r direction and has the equilibrium concentration, 

c , at the gas-electrolyte j s t e r f w e  along the film. Since the 

reabtant is only c o m d  at the electrode surface, 

0 

Integrating equation (4) using the boundary condition that at r = r1 

( 5 )  
0 

C r C  
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stc . .  

and 

Using equation (6) in (2) 

Equation (7) m y  be rewritten in the form 

Differentiating Equation (3) with respect to z and combining the 

resulting equation with EQuation (8) 

The above differential equation m$y be converted into en analogous 

one but with dimensionless parameters, mnkfnP the substitution8 

Thus, EQutrtion (9) reduces to 

as inhy  
2 

dx 
dyi= 
2 l + b e x p y  

where 
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1 .  

- <  

. .  
l -  

and 

In  terns of the dimensionless psrameters, the current at z is given by 

and the to ta l  current by 

The ra t io  of the current at z t o  the t o t a l  current (a t  z 5 /1 ) is 

thus 

It is not possible t o  solve Equation (12) anslytically. A 

numerical solution is, therefore, necessary t o  study the influence 

of the various parameters (io,3( , D, co, r2, rl, 7 )  on the Iz - z 

and 5 - qx (7 = 71 at z = 1 )  relations. 

A first integration of Equstion (x), however, is possible 

using the substitution 

(d'Y)/Cax'> = (1/2) (d /W ( W / W 2  

the boundary condition that when 7 = qo ( i -e . ,  y = yo) 

d q / d s  = 0 (i.e., dy/dx = 0) 

and the substitution U - e x p Y  



I , 

The solution IS 1 - ' . :  - 

(21) 

a Combining Equations (17) and (a), the expression for the current 

distribution within the film is obtained as a function of y (or 7 ) . 
In order that y many be w e s s e d  as a function of x, it is necessary 

to  htea;rate Equation (21) with the boundary condition that at 

L 

x = o ( i - e . ,  z = 0), y = y 0 (i .e. ,  31 = '70' (22) 

Analytic solutions for some limiting cases of EQuation (12) 

are possible w h i c h  w i l l  be considered in the followhg sections. 

3.2 Case of activation and ohm3-c polarization 

When concentration palariz&%on i s  absent b exp y << 1 in 
Equation (12). 

control. 

This case corresponds to that of activation-ohmic 

Under these conditions, Equation (12) becomes 

Using the boundary condition (19) a first integration of Equation (23) 

yields 

(dy/X)Z = 2 cosh y - cosh yo] ( 24) .c 
This equation may be integrated by making the substitutions 

\ 

i 
I 
I .  

I 

i 

1 
I 

i 
i 

= sin 8 1 
cosh (y 12) k =  

0 

and 



Us- this method and the bmderry condition (22), the solution to 

EQustion (24) is 
- 

k F(k,'f') = B 1/2 x (27) 

where  

F ( k , q )  i s  the elliptic integral. of the first kind and tables of this 

integral of the f irst  kind are 8vaSabl.e as a function of 8 and 

(dy/dx) may be expressed in terms of the variable 

tion (26) in (24). Thus, 

by using Equa- 

U s i n g  Equation (29) in (15) , the current is expressed as a f'unction 

of (or x through Equation (27)). The ratio of the current at x = x 

to that at x = 1, is thus 

Some special cases may now be considered. 

(i) Conditions when (y - yo) < 0.15, Equation (23) may be 

rewritten as 



-. - .  

Since (y - yo) is small, the above equatinn  ma^^ be reduced to 

1 2 

dx 
= aL(y - yo) cosh yo + sinh yo 

Equatfon (33) can be solved analyticUy by mdkins; the substitution 

u = (Y - Yo> + tanh Yo 

and using the boundary conditions (18) and (19) which results in the 

solution 

(y - Yo) + tanh yo = tanh Yo cash (5x1 

where If = a cosh yo 

(33) 

Differentiat- Equation (34) 

U s i n g  Equation (35) in (17) the ratio of the current at z to the total 

current (at z = $ ) is given by 

Iz sinh (Klx) q =  s i n h 5  (37) 

This relation shows that the ratio I& varies sirih 5 x  and 

If 5 << 1, (which corresponds t o  a low io, law 

O r  = r2 - rl) Equation (34) reduces t o  

o) high q, a high 
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(39) 

(40) a 2 = - s i n h y o  e x  i.e. y o y o  2 

and Equation (36) becanes 

dy/dx = $ tauh Yo x 

= a sinh yo x 

Under these conditions, (Iz/It) -is given by 

and (43) 

According t o  th i s  relation, there is  a linear variation of the 

current with distance and the observed T a f e l  slope would be the no& 

one. Further, if yo is  i tself  small, Equations (40) and (41) become . 

A linear variation of current with distance means thst there is a 

unifum generation of current in the pore f r o m  z = 0 t o  z = 4. For 

this case, the change in potential f'rom z = 0 to z = 1 is  smal l  and 

at any z, this  change is proportional t o  the square of the distance. 

For the case in which yo is large but (y - yo) is  fimnl.l, the 

t o t a l  current (It) - potential ( ) relation is  Tafellian. However, ?k! 
if yo is s m u  ( 0.2), a linear It relation would be obtained. 
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(ii) 

With these conditions, Equation (23) reduces t o  

Conditions under which yo is large (yo > 2.30) 

Integrating Equation (46), using the boundary condition (19) 

Using the substitution 

(4.8) 

and the boundary condition (22), Equation (47) may be integrated t o  

yield m e  6 f i i i t i a i  

Equation (49) may also be expressed i n  the form 

T h e  latter expression gives the variation of potential with distance 

in the film, Introducing Equation (49) into (47) 

The above equation gives the variation of current with distance in 

the thin film. Using Equation (50) i n  (17) 

ka1/"/2) exp (yo/2)-x1 - 
(52) ----_--- 



A limiting case is when 

~ 

Using these agpmxbations in Equations (49) t o  (52) 

and (60) 

I n  this case, there is hardly any ptential variation in the pore and 

the current i s  generated uniformly i n  the pore. 

Equstion (60) thak for this case, the predicted T a f e l  slope is the 

normal one of ~ r r / ~ .  

It is clear fraa 

men the agproximstioa (9) cannot be made the 

vr%=%ics Q? f T  1 is gkqa &y (521, ~~~~~ to *a *e 'W 't' 

be a short linear region of slope less than 45O followed by a CuNe 

with increasing slope. 

(i.e. at low 

5 slope 

In this cme, the T a f e l  slope is initially 

2Rl!b, followed by a region of double the initial 
r o )  
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3.3 Case of concentration and - ohmic pola;riza%ion 
. *  - 

Conditions under which b exp y >) 1. 

when io and fb r a m  large or when D and eo are small. 

conditions, m i o n  (12) becones 

This condition applies 

Under these 

Using the substitution (18) and integrating the above equation 

It is not possible to obtah an analytic expression for the integral 

of (62). Analytic solutions however, be obtained for some 

limiting cases. 

(i) Suppose (y = yo) is 4 1 ,  which comes- to  a nmnll 

m i a t i o n  in potential in  the thin film. !Chen, Equation (62) reduces to 

Integrating the above equation with boundary condition (21) 

and !2 = '[E $1 - exp (-2y0)3] x 
dur 2 b L  

Using Equation (65) in (17) 
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( i i )  The second limiting case is when both y and yo are 

large such that the exponential t e rm in y rrnd yo nay be neglected in 

c q a x i s o n  t o  the corresponding linear terms. For this case, 

For this case, too, there is a linear variation i n  current with dis- 

tance i n  the thin film. 

c”’I.rrent snd the gatential drop in the thin f i l m  i s  due t o  ohmic polar- 

ization, 

pointed out that the former would refer t o  one of hi& exchange current 

density at l o w  overpotentials and the latter one of low io at high 

overpotentials. 

This case correspraJds t o  one of liniting 

As caslrpased with the p’evious limiting case, it nay be 

4. Numerical c&Lculstions and conclusions 

4.1 Case wkere a l l  f o m  of polarization are considered 

As seen from Eqation (21), it is possible t o  obtain only a 

numerical solutfoa t o  the differential eqpstion (E). 

tions were obtained using au exchange current deasity of 

but v q b g  (a) the pro5uct DnFco, (b) specific conductance of the 

electrolyte, 3(, (c) the radius of the pore, r2 and (a) the thickness 

Iiumerical solu- 

amp cm-2 
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of the fifm, Or. The values of t h e B e  garameWB used the present 

calcuh-tion are shwn in Table 1. Eqya$ion (21) shows that a limiting 

current is obt- when the overpotential reaches fairly high values 

and it is pportiond. t o  a,/b (which propor t iou i ty  is  obtained after 

a second integration using this condition). 

Epustions (13) and (14), it follows th& the limiting current is 

independent of the exchange current density. 

t i a l  range the current density-overpotentid. relation is similar 

t o  that for the case of activation-ohnic polarization case (SectFon 

3.2). It follows fYam Equation (E!) that if the exchange current 

densities are finnller than amp the shape of the averpoterrtial- 

current density curve is similar to that shown f o r  loo6 amp 

the same values of B~F'c', r2, A r  ami 5 '0u.i; wiyn B ga--&. sW~ 

t d i n g  towards the stme limit- current densities. The current- 

potential relations for  lower exchange current densities would show 

longer Tafel regions than those f o r  higher exchange current densities, 

The overpotential-current density relations are shown in Figures 2 t o  

4 for the various cases conslaered in Table 1 with io = 10- amp anm2. 

The noteworthy features of these curves are: 

From this condition and 

In  the lower overpaten- 

with 

* 
6 

( i )  The initial shape of these curves corresponds t o  the case 

of activation-ohmic po?.wizj;%ion considered in the next section, i.e. 

the role of diffusion polarization is negligible. 

* As in a previous paper5 the current density is taken as the product 
of the to ta l  current G,-.:?era%ed per pore and 8f the number of pores 
per an2. The number of poxs anm2 is (1/4 r2) assuning that the 
parallel cylindrical pores touch each other m a cubic array. 
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. .  ( i i )   he length of the portion corresponding t o  the case of 

activation-obmic polarization depends on the magnitude of DISCO, r2, 

& and y in the following manner. The higher the value of DISCO, 

the lower is this region. 

of 21, and r2. 

This is  also the case f o r  the lower vaJueS 

( i i i )  When b in Equation (14) is less than a l imit ing 

current density is not reached in the practical overpatential renge 

(less than 0.7 v). This is more so if the exchange current density 

i s  l o w e r  than lo4 amp una2, 

(iv) The limiting current density is higher, the lmer is 

the value of Ar,  the higher the value of W c 0 ,  or r2. 

c u r r a t  density is We-psknt  of the value of y, 
values of 3, the limiting current is reached at h ighc  values of the 

The limiting 

However, for lower 

over-ptential, 

(v) on comparing current density-overpotentid relations for 

th i s  model and the simple pore model,5 it is readily seen that the 

current densities for the thin f i l m  model exceed that for the simple 

pore model (at  the sane values of the overpotential) throughout the 

entire range using identical kinetic parameters in both cases, 

The general shapes of the current density-overpotential rela- 

tions are s i m i l a r  in both ca,sds, A t  low overpotentials, there is a 

short region showing the normal Taf'el slope of 2XVb which passes over 

into a region where the T a f e l  slope is &I!/F and FinsJly the region where 

the current density varies slowly w i t h  increase of overpotential close 

t o  the limiting current density of the electrode. 
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(vi) The &ament d is t r ibu t ion  plots [ (Iz/% - x (or z) rela- 

tions] show 8 special type o f  behavior. In previous cases, with 

increase of overpotential, the current distribution tends t o  become 

more non uniform with concentration of current generation increasing 

at either one or the other end of the pore.5 In the present cases, 

mere t b  product w c o  is not too high, a ~ d  a l init ing current is 

observed in the averpotentisl region of interest, the current genera- 

t ion becomes non unif'orm with increase of overpotential at lower 

overpotentials but the behavior is reversed at higher overpotentials 

in the regions where the current is close t o  the limiting current. 

A t  the limiting current, there is a uniform current distribution w i t h i n  

the pcre as is obperred at low overpotentials. A t y g i c d  current- 

4.2 Case of activation and ohmic polarization - 

The procedure for the numerical calculations in this case are 

quite similar t o  that for ths corresponding calculation of the simple 

pore model.5 Thus, the calculations would be of two general types, 

values less than 0.1 V, 
*Or ?o 

as shown in  the derivations above. 

the el l ipt ic  integral calculation is necessary. For To 0.1 V 

(the Tafel approximation case!, the results can be expressed in 8 

more general way, 

The el l ipt ic  integral cslculations have been carried out 

varying io, r2, O r  and ?(as hdicated i n  Table 2. 

which one finds in addition t o  the others for the simple pore model 

The only parameter 
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cdculaticn is r2 - rl t A r, the thickness of the thin film. 

same values of vo, as in the simple pore calculation, were used and 

are found in Table 3. 

The 

An analysis of the results of the present calculations m a ~ r  

be best made by campcrring it with the results of the similar calculrr- 

t ion for the simple pore model5 and may be summarized as follows: 

(i) For the same value of the radius of the pore (r2), the 

influence of ohmic polarization is greater for the thin film model 

than for the simple pore model. Thus, the current distribution becomes 

more nan miform at lower overpotentials for the thin film model. 

This effect is &ze t o  ionic conduction having t o  occur only through 

the f : l m  for cke 2m..r;mt model, whereas through the a + , i r e  pme in 

the simnle p r e  ~ 1 2 2 ~ 2 . .  

thickness of the film. 

This elfeci; is obviously leLs, the higher We 

(ii) I n  the present case, even with io = 10’’ amp there 

is an effect of the ohnic-plarization at the small  values of the 

overpotential. T h i s  w a s  not so with the simple pore nodel. 

At higher overpotwtids, the current and potential distrib- 

ution relations (Equations 49 and 50) are represented by the same 

figures as for the simple pore models (Figures 6 and 7). 

are given in term of a parrater A, where A in this case is given by 

These curves 
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As in the elliptic k i t e s &  calcufatim, the c-mren% distribution 

becomes mre  non uniform at lower overpotentials fo r  the thin film 

than fo r  the simple pore model, us- the same values of io, r2 and 

If. 
pore model and Table 5 f o r  the present model, which show the T o  
values corresponding t o  the A values used in the calculations (and 

hence the different curves in Fig. 6 and 7) for various values of io, 

y, r2 and Or- 

This trend is seen by a comparison of Tab le  4 f o r  the simple 
I f  

I 
I 

The current density-overpotential relation is again similar 

in form t o  -&ha% obtained for the simple pore model and is simply 

obtcixd 2 w  t h  useful parameter A, except for a p a r d e l  shift 

both T-erAicG2Tr ~.-iii hoyizontally depending on the v~’-:.ie? a? ?.%e kinetic 

papn2J;e;F . 4 r-: .I- -.-’ r- z?- c ~ n r a t  d ~ ~ ~ ~ - ~ - ; z r + ~ ~ ~ . *  --c - - t  a ;atiun is ~‘hm 

-4 , r* = 10 cm -1 &l in Fig. 8 using i, = LO-6 amp ano2, 7f‘ = 1 ohm 

and rl = 9 x loa5 cm, This figure also shows the cozrespondhg 

current density-overpotential relation for the ~ i n p l e  pore model for 

the sane value of the k inc t lc  parameters. 

simple pore model is higz: t b n  that for  the this film model at 

The curerit density for  the 

higher overpotex?kials. 

No sepra te  calccle%ions were carried out for this case, since 

. 
the results of the first cdculation carried out in the region of the 

limiting current are i0entfcil with those which would be obtained here. 

As is seen from fj-gures 2 t o  4, the current distribution becomes 

uniform close t o  the l i m i t i n g  current density. Further, the limiting 

current per pore is given by Equation (67) with yo + 00. 
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1. Kinetic and p 3 y s i C a l  partmeters for numerical calculations 

(vide Figures 2 - 4). 

Kinetic and m i c a  parameters for ell iptic integral calcula- 

tions in the case of activation and ohmic polarization. 

8 values for elliptic integra& calculations and corresponding 

2. 

3. 

To vslues. 
-4 4.  he qo - A Fewion, ass- y= 1 obo1 mol, r2 = 10 cm, 

R = loo1 cm, for two values of io in the case of activation 

and ohmic polsrizatinn using the simple pore model. 

5 .   he yo - A remion, ass- 5 = 1 ob-’ mol, = 10.5 an, 

j x 10‘’ an for two va11~es of io i,z the case 

ohapic polarization using the thin film model. 

activation anti 
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CAPTIOBIS TO 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

Schematic repesentstion of thin film model of porous electrode. 

Thickness of film largely exaggerated in d i e = .  

Overpotential-current dens i ty  relations, for case where all forms 

of polarization are taken into account, showing effect of varia- 

tion of y or product m c o .  Kinetic parmeters used in cacu- 

lation are given in Table 1. 

Overpotentia,l-current density relations, for case where  a l l  forms 

of polarization are taken into account, showing effect of varia- 

tion of A r. Kinetic parameters are in Table 1. 

Overpotential-current densityrelations, for case where all forms 

of polarization are taken intc ecs lat ,  s k ~ - i  eZ2ec-t of varia- 

tion of r2. 

Typical current distribution relations for case where 8l l  forms 

of polarization are considered. 

curves 1 and 4 respectively of Fig. 2 .  

Current distribution relations for case of activation snd ohmic 

polarization as a function of parameter A. A values are for 

Kinetic parameters are in Table 1. 

Fig. 5 A and B correspnd t o  

@ 0.5; @ 0.6; 0 0.7; A 0.8; 0 0.9; 0 1.0; a 1.1; a 1.2; 

v 1.3; X 1.4; + 1.45; 0 1.50; %] 1.55. 

Potential distribution r e l e i o n s  for case of activation and ohmic 

polarization as a function of parameter A. 

are same as i n F i g .  6. 

Overpotential-current density relation for case of activation and 

Symbols for  A values 
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-5 ,f = loo1 cm. Sol id  line is for -4 
r = 10 cm, Ar 110 a, 

thin fib model. 

ence 5 ) .  

2 
Broken line is for simple pore model (refer- 



Table 1. Kinetic and physical Parameters for Numerical Calculations 

(Vide Figures 2-4) 

?3 

r 
cm 

=2 
cm 

Curve No. DKlFCO Y 
in Fig. 2-4 amp an-1  ohmo1 Cm-l 

1 10 1 10 -4 10-5 

2 10-4 0.1 10-4 10-5 

3 10-9 1 10 -4 10-5 

4 10-9 0.1 loA 10-5 

5 loo6 1 10-4 10-5 

6 LOm6 1 10 

7 10-6 1 10-3 10-5 

-4 

-4 
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T a b l e  2, Kiaetic and Physical ParsPaeters for Elliptic 

Integra Calculations in the C a s e  of Activation 

and Obnic Polarization 

y *M-l ano1 0.1 1 2 

A r  cm 10 -4 10-5 10-6 

T a b l e  3. 8 Values for Elliptic Integral C&C*.~&.~CZS 

and Corresponding qo V a l u e s  

eo To V o l t s  

5 

10 

20 

40 

60 

80 

85 

0.312 

0.243 

0.174 

0.101 

0.055 

0.018 

0.w 



-1 -1 cm 

r2 = 10-4 an, ,! = 10-l m, for TWO vrilues of io in the 

T a b l e  4. Thie qo - A Relation, As- y = 1 ohm - I -  

Case of Activstion and Ohmic Polarization Using the 

Simple Pore Model 

. 

75 

A To  volts for 
io = 10-6 apq, an-2 

0.2 

0.3 

0.4 

0- 5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.45 

1.50 

1.55 

0.150 

0.190 

0.219 

0.241 

0.260 

0.2?3 

0.289 

0.300 

0.311 

0.320 

0.329 

0.336 

0,344 

0.348 
0.351 

0,354 

0.4% 

0.536 

0,565 

0.587 

0.605 

0.6m 

0.634 

0.645 

0.656 

0.666 

0.674 

0.682 

0.690 

0.693 

0.697 

0.700 
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A 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.45 

1.50 

1-55 

0-069 

0 . U  

0.139 

0.161 

0.179 

0-195 

0.208 

0.220 

0 . 230 

0.240 

0.248 

0.256 

0,264 

0.267 

0.271 

0.e4 

0.415 

0.456 

0-485 
0.507 

0 525 

G.943, 

0 - 5 9  

0.566 

0 * 576 

0.5% 

0.594 

0.602 

0.610 

0.613 

0.617 

0.620 
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Thin Film Model 
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Connecticut Avenue E Van Ness Street, M. W. 
Washington, D. C. 
Attn: Nathan Kaplan 
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latick W s .  

latick, Maesaclrusetts 
Attn: 

Clothing & Organic Maferids Pitrs 

Leo A. S p a a o / h M  HC IhUh 

u. s. hlyTAEc(IM 
msicsl Science8 Group 

Attn: ( S W F E )  
P o d  VkT@d.a 

U. S. Army Research Oiiice 
Box a, Duke StatlOa 

Attn: Paul Greer/Dr. W i l h e U  J- 
m-, North Carolina 

U. S.  Army Mobility C d  
Research D i v i s i o n  
Center Line, Michigan 
Attn: 0. R e n i u s  (AMSM0-m) 
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A i r  Force Ba,lliafic Wsrrils M V b b  
Attn: wEp#-2l 
A i r  Force Unit Post Off%ce 
LOB Angelee 45, C a U f c m h  

office, llDR&iE: u8w 6BSs 
The Pentagon 

Attn: 0. Bo 
Washingtan 25, D e  C o  

Mr. Kexmth Be Eigbie 
Staff Mete+llurgist 
Office, Director of hIf3tfhl.l- 
Bureau of Mines 
Interiof l.mlUng 
Washlngtcm, D. COB 20240 



. 

Cell Reports (cmt*d) 



... f 

Cell Reports (coatld.) 

Astropawer, Inc. 
2968 Randolph Avenue 
Costa Mesa, Califoraia 
Attn: Dr. C a r l  3erger 

Battelle Memorial InstitUte 

Attn: Dr. C. L. Faust 
Columbw I, obi0 

Bell Telephone Laboratorfee, && 
Murray H i l l ,  New Jersey 
Attn: Mr. U. B. Thcarre 

Clevite Corporation 
M&xmicS1 Research D i a d -  
540 Earst 105 th Street 
Clevelend, Ohio 
Attn: A. De Schwope 

ElectrocUca Gorp, 
1140 O'Brien Drive 
Menlo Park, California 
Attn: Dr. Morris Eisenberg 

Electro-optical SysteW, a C .  
300 North Halstead Street 
Pasadena, California 
Attn: E. Findl  
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Engelhard Industries, UC. 
497 DeLancy Street 
Newaxk 5, New Jersey 
Attn: Dr. J. G. Cob 

Esso Research & EngbeerhS ( h W W  
Products Research Divieicrar 
P. 0.  Box 215 
Linden, New Jersey 
Attn: Dr. C a r l  math 
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Garrett Carp ,  
1625 st., 19. w. 
wsehiagtan 6, D. C. 
A t h :  R m  

Globe-Uoar , Inc . 
M i l w d m e  1, W i s c a d n  
At tnt  Dr, C. I. lkmhoum 
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Lees- fabar&apliee 
L a b  8uccese park 
C d t y  Drive 
G r e a t  Neck, H ~ w  Yak 
Attn: J k ,  A. Moo6 

North American A v i a t i o n  Co. 
S 8c D D i v i s i o n  
Dmey, C a l i f o r n b  
Attn:  Dr. JrunseHaah 
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speer CaFbOll canpsqv 
Reeserch And D 6 a p m e n t  
Packard Road et 47th St- 
flisgasa F n l ,  Hew Pork 
A t t n :  Dr. L. Ma Li8gett 

Thiols01 Chedcal Corporst iOa 
Reaction Motare D i v i . i a n  
Derrvi l le ,  Hew Jersey 
A t t n t  D r o  D o  J o  U 



Western Reserve University 
Cleveland, Ohio 
Attn:  Prof. Ernest Ye- 

Y a e y  Electric Corp. 
Mew Pork, Mew Ymk 
Attn: Dr. Paul H d  

Lockheed MiSf3ile8 80 Spece Co, 
3251 Hanaver St. 
palo Alto, California 
Attn: Dr. George B. Adam8 

Mr. B. S. Baker 
Institute of Gas Techaology 
State & 34th Streets 
Chicago 16, Il lboit? 

M r .  Peter D. Richmaa 
President 
Cbem Cell Inc. 
3 0xitra.l Am. 
Ezst Hewark, I e w  Jerseg 07029 


